Department of Electronic and Telecommunication Engineering University of Moratuwa

Tutorial 1 - Co-ordinate Transformation

- Write your name and index number at the top right hand corner of the front page
- Drop your answer script into the drop box labeled EN3562
- (1) Derive basic rotation matrices $R_x(\theta)$, $R_y(\beta)$, and $R_z(\gamma)$ using vector component [5 marks] (scalar product) method.

(2) {A} and {B} are two coincident frames.. Frame {B} rotates 30° about z_A , 45° about $x_{A,}$, and then translates to (3,2,1) w.r.t frame {A}.

- (a) Determine ${}^{A}_{B}R$, ${}^{A}P_{Borg}$, and ${}^{A}_{B}T$ [5 marks]
- (b) A vector ${}^{B}P = \{1, 1.5, -3\}$ is attached to frame {B}. Determine ${}^{A}P$ the position [5 marks] coordinates of P w.r.t. {A}.
- (c) Determine ${}_{A}^{B}T$ without using inverse matrix transformation [5 marks]
- (d) A vector ${}^{A}Q = [1.5, 0, -2]$ is attached to frame {A}. Determine ${}^{B}Q$. [5 marks]
- (3) Write Matlab m-code and verify your answers in (2). [5 marks]

(4). A manufacturing work cell with a robot arm is shown in Fig.1

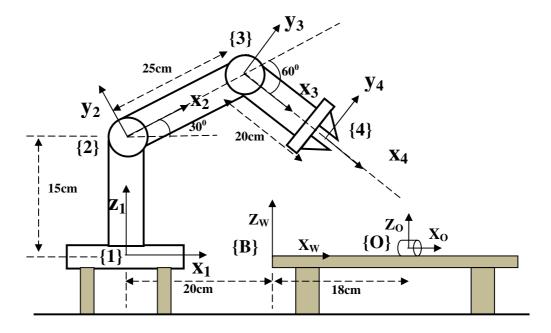


Fig.1 Manufacturing work cell with a robot arm

(b) Determine the position and orientation of the object on the work table {O} with [5 marks] respect to reference co-ordinate frame $\{W\} \equiv \{1\}$

(c) Calculate position and orientation of the object {O} as it is seen by the robot [5 marks] gripper {4}.